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THE THEORETICAL REFLECTANCE OF X-RAYS 
FROM OPT1 CAL SURFACES 

I NTRO DUCT1ON 

The theoretical reflectance of X-rays from various materials and evapo­
rated films has been published by several authors. This report presents some 
theoretical X-ray reflectance data for 0.711 A to 113 A .  Five materials were 
selected for study: fused silica, chromium, beryllium, gold, and a thin layer 
contaminant on fused silica. The theoretical results a re  compared to experi­
mental data for h = 8.34 A .  

PRINCI  PLE OF REFLECTION 

The theory of X-ray r‘eflectance from a surface is described by the 
Fresnel equations, and a derivation is given by Compton and Allison [11. A 
useful form of the Fresnel equations is given in equations (1), (2), and ( 3 ) ,  
and the notations are those of Parratt [2].  The refractive index, r, for X-rays 
is calculated a s  follows: 

r = l  - ( 6 + i P )  9 

where 

6 = Ch2 , 

where 

6 = deviation from unity of the real part of the index of refraction 

Z = atomicnumber 



A = wavelength of incident radiation 

q = particular electronic energy level 

A = wavelength of the qth absorption edge 
q 

= qth oscillator strength 
gq 

c = constant 

Re = [J (A/ A ) -11 [see equation (8) ] , 
q q 

and 

A
P =  ZI.1 9 

where P is the deviation from unity of the imaginary part of the index refraction 
and p is the linear absorption coefficient. 

Since the theory of X-ray reflectance models is well defined in the 
literature, only a few equations of interest will be presented here for comparison 
purposes to differentiate between the methods of approach available and that which 
was chosen for this report. 

A general form for calculating the deviation from unity, 6 ,  of the real 
part of the X-ray index of refraction [ see equation (2)  ] is given in equation (4), 

6 - 	(&) Na(Z + A f  ) , (4)2 m C 2  a a a 

where 

a = individual atomic species present 

e = electronic charge 

2 




m = electronic mass 

C = velocity of light 

N = Avogadro?s number 

Af = shell term correction to model independent approach.
a 

It may be pointed out that an implication of equation (4) is uniform composition, 
at least insofar a s  the proportional number of atomic X-ray interactions is con­
cerned. For the most part, such a lack of uniformity is experimentally insignif­
icant and thus ignored. A possible exception might be a dynamic oxidation 
process in which the stoichiometry of the oxide is a function of time or  position 
or  both, o r  is a function of the spatial variation of a chemically uniform or, in 
some cases, chemically nonuniform contaminant. 

The.principal simplifying assumption, utilized primarily for ease of 
calculation in the literature (e. g., References 3 and 4), involves setting 

Af = o  (5 )a 

This assumption is essentially a model independent approximation that is 
expected to be valid for energies far beyond resonance. This assumption has 
not been utilized in this report and implies expected reflection efficiency varia­
tions from those authors who used this assumption. 

Tables 1and 2 present dispersion calculations for fused silica and 
demonstrate the potential for reflection efficiency variations where Af # 0. a 
In the tables for the chosen model parameters, a comparison may be obtained 
for Af = 0 and Af # 0. The value in the last column of Tables 1and 2 is the 

a a 
value associated with each shell of the atom in question, and the value inserted 
below the table is the value of Af for the atom that is to be compared with Z a 
to determine the effect of the shell term contribution upon the index of refrac­
tion. Specifically, the dependence of Af upon the model parameters may be a
expressed in the form 

Afa = c A f q  9 

q 
3 
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TABLE 1. DISPERSION CALCULATIONS FOR SILICON ( Z  = 14),X = 8.34 1 


_ _ _ _ ~  ­

g4Re[Jq(x)- 11 
[2,61 

-~~~~~~ ~ ~__ 
-1.5710 1.45 

-1.007 X 10" 1.55 

2.750 X 10" 5.00 

8.430X 2.00 

2.015 x 2.00 
_.~ 

_ ~ _ _ _ ~ ~ 

g4 Re(Jq- 1) 
~ ~ 

-2.278 


-0.1562 X 10" 

0.1375 

0.1686 X lo-' 

0.4031 X 

~~ 

Afa = g
4 
Re[J (P ;x) - 11 -2.1544 4  

q 

TABLE 2. DISPERSION CALCULATIONS FOR OXYGEN ( Z  = 8 ) ,  X = 8.34 R 
- _ _ _ ~ -~ ~ _ _ ~ 

P' 
q [51 51 

A/ hq 
[2,61 

K 23.4 3.564 X lo-' 2.75 

518.0 1.610 X 10" 2.0 

LII m 1780.0 4.685X 2.5 

Ma-- gq Re[J (P ;x) - 11 = 0.2952 X lo-'

4 4  
q 


Re[J
4
(x) -13 


~ 

1.883 X 10" 

-2.592 x ioq3 

6.896 X 10" 

LI 
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where 

Af = g Re[J (P  ;x) - 1 1  , 
q q q q  

where 

q = particular shell in question (e. g., K, L, etc. [ 51) 

g = oscillator strength of particular shell 

P = empirical wavelength power law exponent 

x = ratio of incident wavelength to shell resonance wavelength 

and 

l a !  
J = - a! M 

9q 1 - i h  
0 

y - 5  

where 

a! = 1 / 2  ( P  -1) 
q 

y = w / wf = inverse of ratio on integration variable to shell resonance 
q 

frequency 

h = related to radiation damping term [ 6 ]  
& 

5 = ( w  / ~ ) ~ ( l / l - i h ). 
q 

5 




Arbitrary variations of the shell oscillator strength and power law 
exponent result in multiple values for 6 ,  the real part of the index of refraction. 
Because of the potential multiplicity of P and q in equation (7) and because of 
the variation in literature values used, it is necessary to look further into the 
origin of the harmonic oscillator model parameters. Cromer summarizes the 
developmental history of the dispersion term [equation (4) ] and finds general 
agreement with Parratt’ s earlier work [2,7]. 

The power law relating the mass absorption coefficient to frequency of 
incident X-radiation is regarded basically as an empirical formulation. One 
form of the law is 

when w > w , and when w < w 
q q’ 

where 

pq( w ) = absorption coefficient associated with qth shell 

q = resonance frequency of qth shell 

w = incident frequency of X-radiation 

p ( w  ) = absorption coefficient of shell q at frequency w . 
q q q 

A lack of strict validity can be seen in the concepf that p (  w ) = 0 for 
0 < w from which it can be inferred that no absorption takes place by an 

q’ 
electron of the g shell unless the incident radiation energy exceeds the binding 
energy of the q shell electron. Further, a precise evaluation of p ( w  ) is 

q 

6 




difficult due either to inherent experimental and/or theoretical problems, and, 
lastly, the power law exponent, P , is actually a function of incident frequency, 
i. e., q 

P = P q ( w )  

and is therefore not a constant as is typically used in the literature. The atomic 
shells and the exponents used for the given shells of fused silica a re  presented 
in Table 3. 

At 8.34 A the shell absorption coefficient was changed by approximately 
10 percent plus (+AP ) and minus ( - A P  ) from the published literature values 

q q 
for silicon and oxygen. The results from these changes are  indicated in the 
shell term, atom term, delta (6  ) , and the delta sum in Table 3 and Figures 1 
and 2. It appears that when P is increased in value, there is a smaller change 

q 
in 6 than when the exponent is decreased. As the binding energy of the atomic 
shells decreases from the K to the L shell, the influence on 6 is also decreased 
because of the change in ratio of h / A  for the differing shells. Because the 

q 
change in h is small, these changes may be considered negligible since the 
differences in the reflection efficiency curve will be negligible. 

The quantum mechanical oscillator strength applicable to X-ray reflec­
tion theory is often introduced in the literature by analogy to the classical 
mechanic harmonic oscillator. In this sense the calculation of the oscillator 
strengths followed the development of quantum mechanical techniques, as  
indeed the refinements in values obtained for the oscillator strength followed 
the development of quantum mechanical wave function approximation techniques, 
Hamiltonian refinements and additions, and the availability of computational 
facilities, apparently culminating in a self-consistent field relativistic "Dirac-
Slater" wave function approach [71. The,se oscillator strength values obtained 
by D. T. Cromer [7]appear to be the most accurate and have been utilized, 
when available, in this report. In general, there is good consistency among 
those authors who have calculated oscillator strengths, at least to the extent 
possible in terms of the method of approach (Hamiltonian assumptions). 



-- 

TABLE 3, THE SHELL ABSORPTION COEFFICIENT P FOR FUSED SILICA, h = 8.34 A 
q 

- - - - -
New New New New New New New New 
Shell Shell Shell .A Pc Shell 

-A P Shell Shell Shell shell 

Element 	 Term 
P P

9 r e m  P P
4 Term Term 9 Term 

+APq Term 
-A P 

9 lerm A P
4 ' e m  

---- - - ­
)ilicon 

K-Abs. Edge. ....... 6.74 A 
Abs. Coeff ..P q . .  . 2.75 2.50 -2.199 3.0 4.350 
osc. str ......... 1.45 
Shell Term . . . . . .  -2.218 

5-Abs. Edge . . . . . . .  83.2 
Abs. Coeff . .  Pq... 2.0 
osc. str ........ 1.55 
Shell Term. . -0.1562 X IO-' 

$ -Ab% Edge. . . .  124.0 ii 
~ b s .Coeff . .pq 2.5 
Osc. Str ...... 5.0 
Shell Term . . 0.1315 

1.8 -0.1109 2.2 I. 3664 X IO-1 

2.25 1.1015 2.15 0.1363 


Atom Term 0.1971 0.1984 I. 19: 0.1954 0.1979 0.1964 0.1970 

Delta 0.1409 X 0.1458 x I. 1364 X 0.1346 X 0.1438 X IO4 0.1383 X 10" 0.1405 X lo-' 


=n 


K-Abs. Edge. . . . . . . .  23.4 ii 
Abs. Coeff . .Pq.. .  2.15 
osc.  st r . .  . . ..... 1.55 
Shell Term ...... 0.2919 

L -Abs. Edge . . . . . . .  518 
I ~ b s .Coeff . .  P ~ . .. .  2.0 

Osc. Str ......... 1.6 
Shell Te rm.  . -0.4141 x IO-' 

$ -Ab% Edge.. . . .  1180 A 
Abs. Coeff . .Pq. 2.5 
Osc. S t r . .  . . . . .  5.4 
Shell Term -0.3124X10-2 

2.50 1.1702 3.00 8.3195 

1.8 -0.2429 x IO- 2.2 .6286 X IO' 

2.25 1.5186 X 10" 2.15 0.2111 X 10" 

Atom Term 0.2160 0.2160 3.2160 0.2152 0. 62 0. 'fin 0.2159 0.2719 0.2789 
Delta 0.1037 X IO-' 0.1031 X IO* 3.1031 X 10" 0.1034 X 10- 0.1038 X I O a  0.1031 X I O a  0.1031 X lo-' 0.1022 x 10-3 0.1048 x 10" 
Delta sum 0 . 1 ~ 8x IO-' 0.1118 X lo-' 3.1113 X IO-' 0.1169 X lo-' 0.1182 x IO-' 0.1116 X lo-' 0.IIII x IO-' 0.1163 X lo-' 0.1789 x 10" 

Shell Term: g [Re(Jq - l)]
9 

.. 



I 

176 I I I I I I 1 
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S H E U A B S .  COEFF. (Pq 1 


Figure 1. Shell absorption coefficient ( P  ) for oxygen, 
A =  8.34 A .  q 

I I L 1­

176;. 4 1.6 1. a 2.0 2.2 2.4 2.6 2.8 3 . 0 3 . 2  


SHELL ABS. COEFF. (P q 1 


Figure 2. Shell absorption coefficient ( P  ) for silicon, 
A =  8.34 A .  q 
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Again, fused silica was chosen as an example, and Table 4 is a list of 
the oscillator strengths at 8.34 A [71. The oscillator strength'(g ) was changed 

q 
approximately 10 percent plus (+Ag ) and minus (-Ag ) from the values pub­

q q. 
lished in the literature [61. Again, the change in 6 is very small, a s  indicated 
in Figures 3 and 4, and in some cases there is no change. The K-absorption 
edge of silicon is 6.74 A,  which is relatively close to the wavelength of interest, 
8.34 A .  Thus, the greatest change in 6 occurs for the K shell when g . of 

q 
silicon is changed. The next nearest resonance is the K-absorption, edge of 
oxygen at 23.4 A. Consistent with equation (8),  the contribution of thls shell 
is smaller than that of the silicon K shell. Depending upon the value of the 
integral in equation (8) and more specifically the ratio of the shell resonance 
frequency to incident frequency, the calculated contribution of the shell to the 
index of refraction (and thus its contribution to the reflection efficiency) 
become insignificant, negating to some extent the effect of inaccuracies and 
inconsistencies in published oscillator strengths. 

COMPUTATI ONS 

A program has been written that computes the reflected intensity a s  a 
function of the angle of incidence of an X-ray beam incident at grazing angles 
on a laminated planar surface [61. The following data are necessary for use 
in the program to calculate the X-ray reflection at  a given wavelength. Refer­
ences are given for the data used in this report. 

Layer Parameters 

1. Number of layers above the substrate 

2. Layer th ichess  

3. Layer material density [8 ]  

Atomic Element Parameters 

4. Number of chemical elements 

5. Atomic number of the element [81 

10 




TABLE 4. SHELL OSCILLATOR STRENGTH g FOR FUSED SILICA, X = 8.34 
q 

New New New New New New New New 
Shell shell Shell Shell Shell Shell Shell Shell 

Element Term Term Term Term Term Term -A gq Term Term- - ­
K-Abs. Edge.. ........ 6.74 A 

Abs. Coeff.. . . . . . . . .  2.75 
osc. str ....gq . . . . .  1.45 -2.042 -2.514 
Shell Term ........ -2.278 

\-Ab% Edge ......... 83.2 A 
Ahs. Coeff.. ....... 2.0 
osc.  str . . . . . . . .  1.55 .O. 1411 X 10- 1.70 4.1713 X lo-' 
Shell Term ..!-0.1562 X lo-' 

%=-&a. Edge.. ...... 1 2 4 d  
Abs. Coeff ....... 2.5 
osc. str . . . . g q . .  . 5.0 i.5 J.1238 
Shell Term ......0.1375 

Atom Term 0.1971 2010 1. 931 70 0.1970 
Delta 0.7409 X lo-' 7556 X lo-' 1.7261 X l o 4  0.7406 X lo-' 0.7405 X lo-' 0. 97 x 0.7414 X 

!ZYw 
K-Abs. Edge .........23.4 d 
Abs. Coeff ......... 2.75 
osc. str . . . .gq .... 1.55 1.40 3.2637 I. 3202 
Shell Term ........ 0.2919 

\-Ab". Edge ..........518 d 
Abs. Coeff ......... 2.0 
080. S t r  . . . . . . . . .  1.6 1.45 0.3759 x 10-3 1.75 -0.4536 X 10" 
Shell Term. ..!4.4147 x lo-' 

% -Abs. Edge ......1780 d 
Abs. Coeff ...... 2.5 
osc. str ....gq .. 5.4 . us.."" &" .05 0.4173 X 10" 
Shell Term -0.3724 X 10" I 

Atom Term 0.2760 0.2760 0.2760 0.2760 0.2750 0.2769 
Delta 0.1037 X lo4  0.1037 X lo-' 0.1037 X 10" 0.1037 X lo4 0.1033 X lo-' 0.1041 X lo-' 
Delta sum 0.1778 x io-' 1793 X lo-' I. 1763 X lo3 0.1778 X lo-' 0.1778 X l o 4  0.1777 X lo4 0.1774 X lo-' 0.1781 x 104 

'Shell Term: g [Re(J4 - 111 Atom Term: 2 + Z shell term 
q atomic weight 
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6.  Atomic weight of the element [81 

7. The element abundance 

8. Mass absorption coefficient [9,101 

Atomic Shell Parameters 

9. The number of atomic shells [5] 

10. 	 The shell absorption edge (A ) [5] 
q 

11. 	 The shell absorption coefficient power law exponent (P  ) [5,7,11] 
q 

12. 	 The shell oscillator strength (per atom g ) [7,111. 
q 

The program calculates the real and imaginary components, 6 and p, of the 
complex index of refraction and the reflectance at  a given angle of incidence. 

Fused Silica 

Fused silica is a very common material used in the reflection of X-rays. 
The material is used a s  a reflector itself or  as a substrate for deposition of 
thin films. From the input data described previously, the density might be 
varied to change the real and imaginary components of the index of refraction 
[equation (1)1. 

Deviation from the bulk density of the material is common for deposited 
materials, and deviations have been reported also for polished materials. These 
deviations must be given strong consideration when comparing experimental and 
theoretical results [12-18]. The theoretical reflection efficiency curves were 
calculated for fused silica having bulk densities of 2.0, 2.2, and 2.4 g/ cm3 
and at a wavelength of 8.34 A.  The value of 2.0 g/ cm3 was chosen as symbolic 
of a possible surface density modification resulting from polishing. Other 
values for the bulk density of fused silica were selected because they a re  
reasonable and also to demonstrate the effect of density variations on the 
reflection efficiency of a material. Figure 5 is a plot of the reflec'tion efficiency 
as a function of the angle of incidence. Fused silica with a density of 2.0 g/ crn3 
was selected as the best comparison of the theoretical results with experimental 
data (Fig. 6). Table 5 gives the tabulated values of p, 6 , and the critical 
angle (8 ) obtained with the density change in fused silica. 

C 
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ANGLEOF INCIDENCE [ARC M I N )  

Figure 5. Reflection efficiency for fused silica, x’= 8.34 A .  

ANGLEOF INCIDENCE(ARC M I N )  

Figure 6 .  Theoretical and experipental reflection efficiency, 
A = 8.34 A .  
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TABLE 5. DENSITY VARIATION OF FUSED SILICA 


Critical Angle, 

P 

0.145 x IO-* 

2.2 0.195 X 0.160 x 

2.4 0.213 x 0.175 x 
~. 

e =-
C 

(min) 

64.68 


67.89 


70.95 


As the density of fused silica increases, so do the reflection efficiencies 
for a. given angle of incidence, 6 ,  P, and the critical angle. Scott [141 reports 
that in the region near the critical angle, for substrate density variations, the 
angle of incidence necessary to generate an identical reflection efficiency value 
can be approximated by the relation 

where p i  = first layer density and pz  = second layer density. The structure 
similarity obtained in Figure 5 is generally valid in two-media systems where 
only a substrate density variation is allowed if  incident X-rays of resonance 
energy are  excluded. 

Based on the previous comparison of the experimental and theoretical 
data at  8.34 b and a density of 2.0 g/ cm3, a group of theoretical X-ray reflec­
tion efficiency curves were calculated in which only the wavelength varied. 
Figures 7 through 11 are  the reflection efficiency curves a s  a function of the 
angle of incidence for the wavelengths of 1.54 b to 113 b .  Figure 12 is a 
consolidation of these data with reflection efficiency as a function of wavelength 
for selected values of 8. Figure 13 is a presentation of 0 , p /  6 ratio, and the 

C 

shell absorption edges for fused silica over this wavelength range. 
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Figure 7. Reflection efficdency for fuszd silica, 
A =  1.54 R ,  2.75 A ,  and 4. 15A. 
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Figure 8. Reflection efficiencyofor fused silica, 
A =  6. 15 61 and 8.34 A .  
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Figure 9. Reflection efficiency for fused s i l ica,  
= 17.57  1,22.3 R ,  and 27.39 R .  
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Figure 10. Reflection efficiency for fused s i l ica,  
x =44R ~ d 6 7 . 6 A .  
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Figure 11. Reflection efficiency for fused silica, 
X = 82. 1 A ,  83.4 R ,  and 113 A. 
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Figure 12. Theoretical reflection efficiency for fused silica, 
X = 1.54 to 113 A .  
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The influence of the atomic shell absorption edges is noticeable in 
Figures 12 and 13. In Figure 12 the oxygen K-edge (23.3 A )  is evident even 
at the smaller angles of incidence (20 min) and is even more evident at the 
larger angles of incidence (90 min) A comparison of the critical angle and the 
p / 6  ratio in Figure 13 verifies the absorption edge influence. Silicon has two 
absorption edges, the K shell at 6.7 A and the LI shell at 83.4 A .  These two 

absorption edges of silicon verify the absorption effect even though it is not as 
apparent at longer wavelengths (83.4 A ) .  

Chromium 

Chromium, with an atomic number of Z = 24 and several atomic shells, 
was the next material selected. For calculation purposes, chromium was 
assumed to be 1000 A thick and deposited a s  a thin film on fused silica. 

Individual calculations were performed on the chromium layer and the 
fused silica substrate for generation of 6 and p, and standard interface techniques 
were applied utilizing an arbitrary definition ofIj/IjCl, K = 10" as the zero 

incident intensity [61, where I. = the beam incident on an interface j ,  and Ij+l= 
J 

the beam transmitted through the interface j + 1. When the relative 
intensity ratio was reached, no further consideration was given to that part of 
the beam transmitted through interface j + 1. Three densities were chosen 
for theoretical calculations: 6.0, 7.14, and 8.0 g/ cm3. The density of a thin 
film is a result of the conditions of depositions and the metal itself. In the case 
of chromium, a density of 6.0 g/ cm3 appears to compare most favorably with 
the experimental data (Fig. 14). 

Chromium was chosen a s  a material in order to examine the variation 
of the oscillator model parameters. The literature contains discussions as  to 
the quantities to use for the oscillator strengths. The Thomas-Reiche-Kuhn 
summation rule states that for a one-electron atom, 

g (;) = 1 9 
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Figure 13. Critical angle, p/6 ratio, and shell aobsorption 
edge for fused silica, X =, I. 54 to 113 A. 
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Figure 14. Theoretical and experimental reflection efficiency 
for chromium, X = 8.34 A. 
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I 

and for a many-electron atom, the sum of the oscillator strengths is equal to 
Z ,  the atomic number [2,7,11]. Variations of adherence to the Thomas-Reiche-
Kuhn summation rule and variations of the values chosen for the inbividual 
atomic shells exist in the literature. 

From the literature, two examples were selected for various quantities 
of gq, and these are  tabulated in Table 6. Table 6 is an example of different 

I 

oscillator strength numbers for chromium, Z= 24. Part A of the table repre­
sents P !s and g s from Reference 7, and the information in part B was taken 

q q 
from Reference 6. 

Three types of variation a re  present in Table 6. They are  individual 
variation of P and g, simultaneous variation of P and g, and shell grouping. 
Although the individual variation of P and g most effectively differentiates 
reflection efficiency differences, simultaneous variations and different shell 
groupings are  typical of comparison difficulties encountered in the literature. 

Based on the comparison of experimental and theoretical results, curves 
were developed for A = 1.54 A to h = 113 A using those g s from Reference 7 

cl 
(Figs. 15 through 17). The effect of the chromium L11 absorption edge at  

h = 21.4 A is demonstrated in Figure 16, curve G, with a drastic decrease in 
the reflection efficiency as h is increased. Figure 18 is a consolidation of the 
individual wavelengths for selected values of 0 and illustrates the absorption 
edge effect at  21.4 A .  Figure 19 shows the critical angles, p/6 ratios, and the 

, shell absorption edges for chromium. The figures indicate the contribution of 
the shell absorption edges and the p/  6 variation from wavelengths of 1.54 A to 
113 A .  

Beryl l i  um 

Beryllium is another common material with one atomic shell [ 81. The 
grade and properties of beryllium were taken from those telescope materials 
used by NASA on the Apollo Telescope Mount [ 31. The composition of the metal 
is: Be (98.49 percent), Be0 (1.4 percent), C (0.081 percent), Fe (0.170 
percent), A1 (0.059 percent), Mg (0.021 percent), and Si (0.080 percent) 
(Table 7). All of these elements were included in the calculations for the 
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Po

Po TABLE 6. ATOMIC SHELL%
PARAMETER OF CHROMIUM, h = 8.34 W 

Element 
P 
q 

A. Cr K 2.07 2.75 1.34 

LI 17.85 2.33 1.37 

LII 21.24 2.50 1.95 

Lm 21.58 2.50 4.41 

MI 
167.30 2.50 0.94 

M
119 Mm 291.70 2.50 5.41 

I 

Bb C r  ' K 2.07 2.75 1.33 

I LI 17.90 2.0 1.50 

Lm 21.40 2.5 4.0 

MI 168.00 2.5 1.7 

MII' Mm 288.00 2.5 5.0 

MIV' MV 
6200.00 2.5 9.0 

Shell Term Atom Term 

-1.380 

-0.3760 X lo-' 
0.1980 

4559 

1763 X 10" 

4835 X 10" 8i 0.4481 

Delta Sum I 0.5053 X 
1, 

I 

-1.369 

-0.3528 

0.4098 

0.3172 X lo-' 
0.4547 x 10" 

0.9973 x 1 0.4377
f 0.5874 X lo5  

Delta sum 
1 I 
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Reflection efficiency for chromium, 
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Figure 16. Reflection effigiency for chromium, 
X = 0 . 3 4 i ,  1 4 . 6 A ,  and22.3R. 
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Figure 17. Reflection efficiency for chromium, 
X = 4 4 . 7 1 ,  6 7 . 6 1 ,  and 1 1 3 i .  
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Figure 18. Theoretical reflection eciciency for chromium, 
X = 1.54 A to 113 A .  

24 



------ 

.o0 

10-1 

C R I T I C A L  ANGLE - ------. 
B/d RATIO 0 

SHELL ABSORPTION EDGE ---0 

Cr-K C r - L I  
o m  

I I .  I I I I L 1 L 1 Lnn;r I 1 I I I l l  

lo1 lo2 
WAVELENGTH (i) 

Figure 19. Critical angle, p / 6  ratio, and shell absorption 
edge for chromium, h = 1.54 f to 113 f .  

reflection efficiency of Figures 20 through 23. The effect of the Be K-absorption 
edge at  111.6 A is noted in curve I of Figure 21. It appears, when comparing 
Figures 22 and 23, that some of the absorption edges of the elements constituting 
smaller percentages may affect the shape of the theoretical curve. For 
example, silicon has two absorption edges, one at  6.74 A and another at 83.4 A .  
A comparison of these edges, the critical angles, and the p / S  ratios illustrates 
the shell influence that contributes to a decrease in the reflection efficiency. 
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TABLE 7. ATOMIC SHELL PARAMETERS OF BERYLLIUM, X = 8.34 


P
Element 9 9 

Be K 111.6 2.75 
c 

Be0 Be K 111.6 2.75 

O K 23.3 2.75 

O 4 518 2.00 

O % m  1780 2.50 

C K 43.6 2.75 

Al 

LII m 1937 2.5 
1 .. 

Fe K 1.74 2.75 

LI 14.65 2.00 

LII 17.19 2.50 

17.50 2.50 

MI 13.34 2.50 

MII m 229.5 2.50 

K "I-­105.3 


=I 


LII m 170 2.50 
. 

M g  K 9.50 2.75 

i LI 38.68 2.00 

24.12 2.50m 
Si K 6.74 2.75 

I LI 83.2 2.00 

LIIm 124 2.50 

MI 1550 2.50 

I MIIm 

26 

g9 Shell Term 

2.06 0.6536 X lo-' 

2.06 0.6536 X lo-' 

1.55 0.2919 


1.60 -0.4147 X 

5.40 0.3724 x 10-2 

1.45 0.1592 


5.00 0.3049 X lo-' 
~ 

1.33 -1.357 

1.37 -0.5039 

1.87 0.9668 X lo-' 

4.24 0.2476 

1.00 0.2508 X lo-' 

4.95 0.6114 X lo-' 

1.57 -3.894 


1.35 -0.8479 X lo-' 

6.97 0.1284 


1.62 -1.661 


1.30 -0.6139 X lo-' 

7.02 0.8115 X lo-' 
~~ ~ 

1.45 -2.278 

1.55 -0.1562 X lo-' 

5.00 0.1375 

2.00 0.1686 X 

2.00 0.4031 X 

- _  
Atom Term Delta 

~~~ ~~ ~ 
~ 

0.4271 0.1488 X 10­

0.4770 X 10" 0.1662 X 10­

0.1388 X lo-' 0.4839 x 10­

0.5325 X 0.1855 X lo-' 
~~ 

1.4454 x 10-2 0.1552 X lo-' 
~~~ ~~ 

I.  5443 x 10-2 0.1896 X lo-' 

1.2174 X lo-' 0.7577 x 10" 
~~ - _  

1.9471 X 10' 0.3300 X lom5 

Delta Sum 0.1630 X 
_ -
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Figure 20. Refleoction efficiency for  berylliumd X = I. 93 A ,  
2 . 7 5 A , 4 . 1 5 i ,  
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Figure 21. Reflection efficiency for ber  llium, 
X = 2 1 . 6 1 , 4 4 . 7 R ,  6 7 . 6 1 ,  and113 l. 
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Figure 22. Theoretical reflection efficiency for  beryllium, 
= 1.93 to 113 1.' 
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Figure 23. Critical angle, p/6 ratio, and shelloabsorption 
edge for beryllium, X = I. 93 1 to 113 A. 
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The critical angle and the 6 -value were compared to those published by 
Schroeder, et al. [41. They used equation (5) (Af  = 0) for their calculation 

a
of 6 . A comparison is as follows: 

Reference 4 
6 : 0.869 x lo* 0.84 x 

8 : 14.33 min 13.79 min 
C 

Gold 

Gold, which has many atomic shells, was the fourth material studied. 
An assumption was made that the gold layer would be 1000 A thick and coated on 
a fused silica substrate. While beryllium has one shell and an atomic number 
of 4, gold has many shells and an,atomic number of 79. The first 16 shells of 
gold were combined into 8 (for calculation purposes) based on the similarity 
of their shell absorption edges (Table 8) .  

A s  the atomic number increases, so does the angle of incidence in X-ray 
reflection. An exception to this is around an absorption edge. A comparison 
of beryllium with gold follows: 

Angle of Incidence Percent of 
Material A ( A )  (min) Reflection 

Be 8.34 63 50 

Au/ SiO, 8.34 138 50 

Si02 8.34 64 50 

Figures 24 through 27 present the individual wavelengths for gold, and 
Figure 28 is a consolidation of Figures 24 through 27. The trend for these 
various angles of incidence indicates the effect of the shell absorption edge. 
Also, in Figure 29, the influence of the edges is seen in the critical angles 
and the p / 6  ratio. 
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Figure 24. Reflection efficiency for gold, X = 0.7.11 A, 
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Figure 25. Reflection efficiency fo r  gold, 
X = 6. 15 h; and 8.34 A.  
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Figure 26. Reflection efficiency tor gold, 
X = 19.2 A ,  2 1 . 6 A ,  and 31.4 A.  
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Figure 27. Reflectionoefficiency for gold, 
X = 44.7A ,  67.6 A ,  and 113 A .  
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Figure 28. Theoretical reflection efficiency fo r  gold, 
A =  0.711 to 113 A .  
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Figure 29. Crittcal angle, p/6 ratio, and shell absorption 
edge for gold, X = 0.711 to 113 A .  
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TABLE 8. ATOMIC SHELL PARAMETERS OF GOLD, A =  8.34 1 

Element q 
P 
q gq Shell Term Atom Term 

AU K 0.1530 2 . 7 5  1 . 2 5  -1.250 

L L
I l l  0.8830 2 .42  1 .16  -1.165 

Lm 1.040 2.50 2 . 2 6  -2.275 

1 1 1  3.780 2.50 1 .14  -1.255 
M

"V 5.184 2.50 4.29 -5.246 

M M  

N N  N
I I I I I I  19.44 2.50 1 .39  0.1212 

NIvNv 36.17 2.50 3.88 0.3865 
N

VI VII 146.6 2.50 12.36 0.2750 0.3481 

Delta sum 1.1067 X 10'' 
-~ . _ _  

Fused Silica - Contaminated 

A contaminant with a composition of C28H32Si302was assumed to be 
coated as  a single uniform layer on fused silica at  a density of 1.0 g/ cm3. 
This chemical composition is similar to some of the diffusion pump fluids 
offered by various manufacturers. 

Figure 30 is a demonstration of an increase in layer thickness of the 
contaminant in 25 A increments and at an incident wavelength of 8.34 A.  The 
effect of the contaminant on the reflection efficiency for the 100 A film is 
evident at 8 slightly greater than 8 and increases as 8 increases. The con-

C 

taminant effect on the reflection efficiency below 10 percent is predominant 
at  a thickness from 20 to 100 A .  When the layer thickness of the contaminant 
is increased sufficiently, an interference peak occurs in the lower reflection 
efficiency region, or at large values of8 (Fig. 31). If desired, the relative 
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Figure 30. Reflection effigiency fo5 fused silica, contaminated, 
X = 8.34 A ,  25 A to 100 A film thickness. 
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Figure 31. Reflection efficiency for fused silica, contaminated, 
X = 8.34 A ,  150 film thickness. 
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position of the interference peaks can be utilized to approximate the thickness 
of the contaminant in the following manner: 

(N -i)A = 2d( -. 26) y2 

where 

. N = order number of successive maxima 

d = film thickness 

A = wavelength of X-rays 

'max = position of maximum (radian) 

6 = deviation from unity of real part of refractive index. 

Equation (13) is valid if 0 > 0 and if the reflecting material is nonabsorbing.
C 

In the typically absorbing case, it is possible (depending upon precision avail­
able and accuracy desired) to approximate the thickness merely by replacing 
the h / 2  shift by a factor specifically characteristic and determined from the 
varying spacing of the interference peaks, represented a s  follows: 

( N  - K ) h =  2d(Omax -26) q 2  9 

where K = the numerical constant on the order of one-half. 

Table 9 is a tabulation of the interference peaks at the angle of incidence 
and the reflection efficiency at  which they occur. From this table it appears 
that a s  the thickness of the contaminant layer increases, the number of inter­
ference peaks also increases, occurring at smaller values of 8 and therefore 
at a higher X-ray reflection. As the layer thickness increases from 250 to 
1000 and the number of interference peaks increases, the interference effect 
of the film on the shape of the reflection efficiency curve becomes more constant 
compared to the changing effect in the thinner films. For a layer thickness of 
150 to 1000 A (Figs. 31 through 39), the majority of these peaks occur from 
52 to 74 min angle of incidence. In Figure 35 the contaminant density was 
varied -+O. 1g/ cm3 to illustrate the effect on the efficiency and the interference 
peaks. 
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TABLE 9. INTERFERENCE PEAKS 


Thickness ( A )  

150 (Fig. 31) 

175 (Fig. 32) 

200 (Fig. 33) 

225 (Fig. 34) 

250 (Fig. 35) 

375 (Fig. 36) 

500 (Fig. 37) 

750 (Fig. 38) 

1000 


e (min) 

90 


80 


70 


70 


64 


62 


88 


58 


72 


98 


54 


62 


74 


90 


106 


52 


58 


64 


74 


86 


98 


Reflection Efficiency 
(% 1 


1.8 

3.4 

6.0 

10.0 

A - 12 

B - 18 

C - 28 


46.0 

3.0 

50.0 

9.0 

1.7 

47.0 

35.0 

7.9 

2.5 

1.1 

41.0 

38.0 

22.0 

6.6 

3.0 

1.5 
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Figure 32. Reflection efficiency for fused silica, contaminated, 
X = 8.34 A ,  175 1 film thickness. 

ANCLEOF INCIDENCE (ARC M I N I  

Figure 33. Reflection efficiency for fused silica, contaminated, 
X = 8.34 A ,  200 film thickness. 
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Figure 34. Reflection e,��iciency for fused silica, contaminated, 
X = 8.34 A ,  225 film thickness. 
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Figure 35. Reflection efficiency for fused silica, contaminated, 
X = 8.34 A ,  250 h; film thickness. 
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Figure 36. Reflection efficiency for fused silica, contaminated, 
X = 8 . 3 4  A , 375 film thickness. 

A - 8.34 8, 
THICKNESS - HK) 8, 

ANGLE OF INCIDENCE (ARC MIN)  

Figure 37. Reflection efficienc for fused silica, contaminated, 
X = 8 . 3 4  A ,  500 w film thickness. 
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Figure 38. Reflection efficiency for  fused sil ica,  contaminated, 
h = 8.34 A ,  750 A film thickness. 
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Figure 39. Reflection 	 for  fused silica, contaminated, 
film thickness. 
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Figure 40 is a summation of Figures 30 through 39. For angles of 
incidence of 20, 40, and 44min there is very little decrease in reflection 
efficiency from 25 to 1000 A layer thickness. As the angle of incidence 
increases per layer thickness increase, the general trend is a decrease in 
X-ray reflection efficiency a t  8.34 A .  

Figures 41 through 43 are  examples of a 50 A layer thickness contam­
inant with incident radiation from 1.54 to 113 A .  The effect of the contaminant 
at these wavelengths can be determined by comparison with Figures 7 through 
11. Figure 44 is a consolidation of Figures 41 through 43, and Figure 45 is a 
graph of the critical angles, p / S  ratios, and the shell absorption edges. 

SUMMARY 

The theor lection of X-rays has been#demon­
strated in this heir effect necessary to generate 
these data have men iaentiried. Some of the quantities are the atomic number, 
atomic weight, density, thickness, and chemical composition of the materials. 
Also, the presentation of the X-ray reflection efficiency curves is based on 
atomic considerations. 

It was also noted that both the literature values for the oscillator model 
parameters and the combinations of these values which result in X-ray index of 
refraction are  of a nonunique nature. In terms of the literature values, the 
nonuniqueness concerns both oscillator model values and the associated index 
of refraction., resulting in an extensive lack of valid comparisons in the litera­
ture. The multiplicity of model parameter combinations (yielding identical 
indices of refraction) necessitated considerations which, with slight modifica­
tion of the existing computer programs, can result in the generation of X-ray 
reflection efficiency from a priori considerations. It was also noted that, 
given existing experimental inaccuracies, further refinement of the approach 
of Cromer is unnecessary from a comparison standpoint. In many cases, 
however, to achieve valid comparisons between experimental and theoretical 
X-ray reflection efficiency curves or to generate valid efficiency predictions, 
it is necessary to utilize the oscillator model correction (equation) and the 
more precise parameters ( a  course which is not common in the literature). 
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Figure 40. Reflection efficiency for ofused silica, contaminated, 


X = 8.34 A ,  25 hl to 1000 A film thickness, 

8 = 20  min to 70 min angle of incidence. 


THICKNESS -MA 

A - **1.548, 

B - x * 2 . 7 5 8 ,  

c - x - 4.15 8, 

D - )--6.15a 

Figure 4 I. Reflection efficiency for fused silica, contaminated, 
A =  1.54A, 2.75h; ,  4.15A, a n d 6 . 1 5 i .  

42 

-I--, ..I. , 1 . . 1 1 1 1 1 . 1 1 1 1 1 l l l  11111111 I I I I 1  I. 1 1 1 1 1 1 1 1 1 1 ~ 1 1 . 1 ~ 1 1 1 1 1 1 1 1II 1111111111111111111.1.11111 1111 111 I I IIII.11111 I 



Figure 42. Reflection efficiency for fused s i l ica,  contaminated, 
= 8 . 3 4 1 ,  1 7 . 5 7 i ,  a n d 2 7 . 3 9 1 .  

ANGLEOF INCIOENCE(ARC MINI 

Figure 43. Reflection efficiency for fused silica, contaminated, 
h =44 A ,  67.6  1,and 113 A. 
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Figure 44. Theoretical reflection efficiency for fused silica, 
contaminated, h = 1.54 K to 113 R .  
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Figure 45. Critical angle, p/6 ratio, and shell absorption edge 
for fused silica, contaminated, A = 1.54 A to 113 A .  
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From a macroscopic point of view, this report  focused primarily upon 
the thickness and density of a deposited material ,  applicable to both m i r r o r  
coating and ' c ontam ination. 

The influence of density on both the parameters of reflection efficiency 
and the reflection efficiency curve itself is significant. In cases  where the 
density of the material  is unknown, the X-ray characterist ics can be used with 
comparison and controlled testing for  accurate prediction of a controlled 
deposition process . 

If the thin film deposited on a reflecting surface is of a contaminant type, 
various interference peaks can occur in relation to the thickness. The theo­
retical  calculations have the capability for  predictions involving a range from 
a single element to multiple chemical element materials;  thus, all elements 
contribute to the reflection of the X-rays. 
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